algorithm - All permutations of n numbers in depth first manner -
how can generate permutations (order matters) replacements , order matters set of n
numbers, contain m
elements in each combination?
i don't want use more memory, generate combination, want use it.
first, note if order matters , replacements allowed, have n
options choose each element (m
of those) - , amount of choices have remains constant.
this means have n*n*...*n = n^m
possible combinations.
to generate them, can use recursion:
python code: (if don't know python, read pseudo code, it's pretty clear).
def generateall(numbers, m, currentpermutation=[]): if m == 0: dosomething(currentpermutation) return x in numbers: currentpermutation.append(x) generateall(numbers, m-1, currentpermutation) currentpermutation.pop()
for example, if define
def dosomething(l): print str(l)
and run
generateall([1,2,3], 4)
output print combinations repalcements, order matters, of size 4 [1,2,3]:
[1, 1, 1, 1] [1, 1, 1, 2] [1, 1, 1, 3] [1, 1, 2, 1] [1, 1, 2, 2] [1, 1, 2, 3] [1, 1, 3, 1] [1, 1, 3, 2] [1, 1, 3, 3] [1, 2, 1, 1] [1, 2, 1, 2] [1, 2, 1, 3] [1, 2, 2, 1] [1, 2, 2, 2] [1, 2, 2, 3] [1, 2, 3, 1] [1, 2, 3, 2] [1, 2, 3, 3] [1, 3, 1, 1] [1, 3, 1, 2] [1, 3, 1, 3] [1, 3, 2, 1] [1, 3, 2, 2] [1, 3, 2, 3] [1, 3, 3, 1] [1, 3, 3, 2] [1, 3, 3, 3] [2, 1, 1, 1] [2, 1, 1, 2] [2, 1, 1, 3] [2, 1, 2, 1] [2, 1, 2, 2] [2, 1, 2, 3] [2, 1, 3, 1] [2, 1, 3, 2] [2, 1, 3, 3] [2, 2, 1, 1] [2, 2, 1, 2] [2, 2, 1, 3] [2, 2, 2, 1] [2, 2, 2, 2] [2, 2, 2, 3] [2, 2, 3, 1] [2, 2, 3, 2] [2, 2, 3, 3] [2, 3, 1, 1] [2, 3, 1, 2] [2, 3, 1, 3] [2, 3, 2, 1] [2, 3, 2, 2] [2, 3, 2, 3] [2, 3, 3, 1] [2, 3, 3, 2] [2, 3, 3, 3] [3, 1, 1, 1] [3, 1, 1, 2] [3, 1, 1, 3] [3, 1, 2, 1] [3, 1, 2, 2] [3, 1, 2, 3] [3, 1, 3, 1] [3, 1, 3, 2] [3, 1, 3, 3] [3, 2, 1, 1] [3, 2, 1, 2] [3, 2, 1, 3] [3, 2, 2, 1] [3, 2, 2, 2] [3, 2, 2, 3] [3, 2, 3, 1] [3, 2, 3, 2] [3, 2, 3, 3] [3, 3, 1, 1] [3, 3, 1, 2] [3, 3, 1, 3] [3, 3, 2, 1] [3, 3, 2, 2] [3, 3, 2, 3] [3, 3, 3, 1] [3, 3, 3, 2] [3, 3, 3, 3]